DiSMEC++
|
Classes | |
class | ConstantInitializer |
class | ConstantInitializationStrategy |
An initialization strategy that sets the weight vector to a given constant. More... | |
class | MeanOfFeaturesInitializer |
class | MeanOfFeaturesStrategy |
struct | TypeLookup |
struct | TypeLookup< false > |
struct | TypeLookup< true > |
class | MultiPosMeanInitializer |
class | MultiPosMeanStrategy |
class | NumpyInitializer |
class | NumpyInitializationStrategy |
class | PreTrainedInitializer |
class | PreTrainedInitializationStrategy |
class | SubsetFeatureMeanInitializer |
class | SubsetFeatureMeanStrategy |
class | ZeroInitializer |
class | ZeroInitializationStrategy |
class | WeightsInitializer |
Base class for all weight initializers. More... | |
class | WeightInitializationStrategy |
Base class for all weight init strategies. More... | |
Functions | |
std::shared_ptr< WeightInitializationStrategy > | create_zero_initializer () |
Creates an initialization strategy that initializes all weight vectors to zero. More... | |
std::shared_ptr< WeightInitializationStrategy > | create_constant_initializer (DenseRealVector vec) |
std::shared_ptr< WeightInitializationStrategy > | create_pretrained_initializer (std::shared_ptr< model::Model > model) |
Creates an initialization strategy that uses an already trained model to set the initial weights. More... | |
std::shared_ptr< WeightInitializationStrategy > | create_numpy_initializer (const std::filesystem::path &weights, std::optional< std::filesystem::path > biases) |
Creates an initialization strategy that uses weights loaded from a npy file. More... | |
std::shared_ptr< WeightInitializationStrategy > | create_feature_mean_initializer (std::shared_ptr< DatasetBase > data, real_t pos=1, real_t neg=-2) |
Creates an initialization strategy based on the mean of positive and negative features. More... | |
std::shared_ptr< WeightInitializationStrategy > | create_multi_pos_mean_strategy (std::shared_ptr< DatasetBase > data, int max_pos, real_t pos=1, real_t neg=-2) |
Creates an initialization strategy based on the mean of positive and negative features. More... | |
std::shared_ptr< WeightInitializationStrategy > | create_ova_primal_initializer (const std::shared_ptr< DatasetBase > &data, RegularizerSpec regularizer, LossType loss) |
std::shared_ptr< WeightInitializationStrategy > dismec::init::create_constant_initializer | ( | DenseRealVector | vec | ) |
Creates an initialization strategy that initializes all weight vectors to the given vector. TODO allow both dense and sparse vectors.
Definition at line 56 of file constant.cpp.
Referenced by create_ova_primal_initializer(), TrainingProgram::make_config(), and register_init().
std::shared_ptr< WeightInitializationStrategy > dismec::init::create_feature_mean_initializer | ( | std::shared_ptr< DatasetBase > | data, |
real_t | pos = 1 , |
||
real_t | neg = -2 |
||
) |
Creates an initialization strategy based on the mean of positive and negative features.
Definition at line 90 of file msi.cpp.
Referenced by TrainingProgram::make_config(), and register_init().
std::shared_ptr< WeightInitializationStrategy > dismec::init::create_multi_pos_mean_strategy | ( | std::shared_ptr< DatasetBase > | data, |
int | max_pos, | ||
real_t | pos = 1 , |
||
real_t | neg = -2 |
||
) |
Creates an initialization strategy based on the mean of positive and negative features.
Definition at line 212 of file multi_pos.cpp.
Referenced by TrainingProgram::make_config(), and register_init().
std::shared_ptr< WeightInitializationStrategy > dismec::init::create_numpy_initializer | ( | const std::filesystem::path & | weights, |
std::optional< std::filesystem::path > | biases | ||
) |
Creates an initialization strategy that uses weights loaded from a npy file.
Definition at line 58 of file numpy.cpp.
References dismec::io::load_matrix_from_npy().
Referenced by TrainingProgram::make_config().
std::shared_ptr< WeightInitializationStrategy > dismec::init::create_ova_primal_initializer | ( | const std::shared_ptr< DatasetBase > & | data, |
RegularizerSpec | regularizer, | ||
LossType | loss | ||
) |
Creates an initialization strategy based on
Huang Fang et al. “Fast training for large-scale one-versus-all linear classi- fiers using tree-structured initialization”. In: Proceedings of the 2019 SIAM International Conference on Data Mining.
Definition at line 15 of file ova-primal.cpp.
References create_constant_initializer(), dismec::objective::LinearClassifierBase::get_label_ref(), dismec::make_loss(), dismec::objective::make_regularizer(), and dismec::types::visit().
Referenced by TrainingProgram::make_config(), and register_init().
std::shared_ptr< WeightInitializationStrategy > dismec::init::create_pretrained_initializer | ( | std::shared_ptr< model::Model > | model | ) |
Creates an initialization strategy that uses an already trained model to set the initial weights.
Definition at line 48 of file pretrained.cpp.
std::shared_ptr< WeightInitializationStrategy > dismec::init::create_zero_initializer | ( | ) |
Creates an initialization strategy that initializes all weight vectors to zero.
Definition at line 33 of file zero.cpp.
Referenced by dismec::create_cascade_training(), dismec::create_dismec_training(), and register_init().