DiSMEC++
|
Classes | |
class | DenseAndSparseLinearBase |
Base class for implementationa of an objective that combines dense features and sparse features. More... | |
struct | DenseAndSparseMargin |
class | GenericLinearClassifier |
This is a non-templated, runtime-polymorphic generic implementation of the linear classifier objective. More... | |
struct | GenericMarginClassifier |
A utility class template that, when instatiated with a MarginFunction , produces the corresponding linear classifier loss. More... | |
class | LinearClassifierBase |
Base class for objectives that use a linear classifier. More... | |
class | LinearClassifierImpBase |
Implementation helper for linear classifier derived classes. More... | |
struct | SquaredHingePhi |
struct | HuberPhi |
struct | LogisticPhi |
class | Objective |
Class that models an optimization objective. More... | |
class | PointWiseRegularizer |
Base class for pointwise regularization functions. More... | |
class | Regularized_SquaredHingeSVC |
struct | SquaredNormConfig |
struct | HuberConfig |
struct | ElasticConfig |
class | SquaredNormRegularizer |
This class implements a squared norm (L2) regularizer. Thus f(x) = 0.5 |x|^2 . More... | |
class | HuberRegularizer |
This class implements a huber regularizer. More... | |
class | ElasticNetRegularizer |
Functions | |
std::unique_ptr< DenseAndSparseLinearBase > | make_sp_dense_squared_hinge (std::shared_ptr< const GenericFeatureMatrix > dense_features, real_t dense_reg_strength, std::shared_ptr< const GenericFeatureMatrix > sparse_features, real_t sparse_reg_strength) |
std::unique_ptr< GenericLinearClassifier > | make_squared_hinge (std::shared_ptr< const GenericFeatureMatrix > X, std::unique_ptr< Objective > regularizer) |
std::unique_ptr< GenericLinearClassifier > | make_logistic_loss (std::shared_ptr< const GenericFeatureMatrix > X, std::unique_ptr< Objective > regularizer) |
std::unique_ptr< GenericLinearClassifier > | make_huber_hinge (std::shared_ptr< const GenericFeatureMatrix > X, std::unique_ptr< Objective > regularizer, real_t epsilon) |
std::unique_ptr< Objective > | make_regularizer (const SquaredNormConfig &config) |
std::unique_ptr< Objective > | make_regularizer (const HuberConfig &config) |
std::unique_ptr< Objective > | make_regularizer (const ElasticConfig &config) |
Regularizers are implementations of Objective
that depend only on the weight vector, but make no reference to external data. From the Objective
interface, this is not visible, since the data is not part of the public interface.
std::unique_ptr< GenericLinearClassifier > dismec::objective::make_huber_hinge | ( | std::shared_ptr< const GenericFeatureMatrix > | X, |
std::unique_ptr< Objective > | regularizer, | ||
real_t | epsilon | ||
) |
Definition at line 185 of file generic_linear.cpp.
Referenced by dismec::make_loss().
std::unique_ptr< GenericLinearClassifier > dismec::objective::make_logistic_loss | ( | std::shared_ptr< const GenericFeatureMatrix > | X, |
std::unique_ptr< Objective > | regularizer | ||
) |
Definition at line 180 of file generic_linear.cpp.
Referenced by dismec::make_loss().
std::unique_ptr< Objective > dismec::objective::make_regularizer | ( | const ElasticConfig & | config | ) |
Definition at line 134 of file regularizers_imp.cpp.
References dismec::objective::ElasticConfig::Epsilon, dismec::objective::ElasticConfig::IgnoreBias, dismec::objective::ElasticConfig::Interpolation, and dismec::objective::ElasticConfig::Strength.
std::unique_ptr< Objective > dismec::objective::make_regularizer | ( | const HuberConfig & | config | ) |
Definition at line 130 of file regularizers_imp.cpp.
References dismec::objective::HuberConfig::Epsilon, dismec::objective::HuberConfig::IgnoreBias, and dismec::objective::HuberConfig::Strength.
std::unique_ptr< Objective > dismec::objective::make_regularizer | ( | const SquaredNormConfig & | config | ) |
Definition at line 126 of file regularizers_imp.cpp.
References dismec::objective::SquaredNormConfig::IgnoreBias, and dismec::objective::SquaredNormConfig::Strength.
Referenced by dismec::init::create_ova_primal_initializer(), and dismec::DiSMECTraining::make_objective().
std::unique_ptr< DenseAndSparseLinearBase > dismec::objective::make_sp_dense_squared_hinge | ( | std::shared_ptr< const GenericFeatureMatrix > | dense_features, |
real_t | dense_reg_strength, | ||
std::shared_ptr< const GenericFeatureMatrix > | sparse_features, | ||
real_t | sparse_reg_strength | ||
) |
Definition at line 247 of file dense_and_sparse.cpp.
Referenced by dismec::CascadeTraining::make_objective().
std::unique_ptr< GenericLinearClassifier > dismec::objective::make_squared_hinge | ( | std::shared_ptr< const GenericFeatureMatrix > | X, |
std::unique_ptr< Objective > | regularizer | ||
) |
Definition at line 175 of file generic_linear.cpp.
Referenced by dismec::make_loss(), and TEST_CASE().