DiSMEC++
Namespace List
Here is a list of all namespaces with brief descriptions:
[detail level 12345]
 Nanonymous_namespace{cascade.cpp}
 CCombinedWeightInitializer
 Nanonymous_namespace{collection.cpp}
 CMockStat
 Nanonymous_namespace{dense.cpp}
 Nanonymous_namespace{dense_and_sparse.cpp}
 CL2Regularizer
 CZeroPhi
 Nanonymous_namespace{generic_linear.cpp}
 Nanonymous_namespace{hash_vector.cpp}Local namespace in which we define the counter used to create the unique ids for the hash vector
 Nanonymous_namespace{hyperparams.cpp}
 CTestObject
 CNestedTestObject
 Nanonymous_namespace{linear.cpp}
 Nanonymous_namespace{metrics.cpp}
 Nanonymous_namespace{minimizer.cpp}
 CMockMinimizerA minimizer to be used in test cases that returns a fixed result
 CMockObjectiveAn objective to be used in test cases. Does not do any computations, but just resturns constants
 Nanonymous_namespace{model-io.cpp}
 Nanonymous_namespace{newton.cpp}
 Nanonymous_namespace{null.cpp}
 Nanonymous_namespace{numa.cpp}
 CNodeData
 Nanonymous_namespace{numpy.cpp}
 Nanonymous_namespace{objective.cpp}
 Nanonymous_namespace{prediction.cpp}
 Nanonymous_namespace{py_data.cpp}
 Nanonymous_namespace{py_train.cpp}
 Nanonymous_namespace{reg_sq_hinge.cpp}
 Nanonymous_namespace{regularizers_imp.cpp}
 Nanonymous_namespace{runner.cpp}
 CDummyTask
 Nanonymous_namespace{slice.cpp}
 Nanonymous_namespace{sparse.cpp}
 CPredictVisitor
 CSetWeightsVisitor
 Nanonymous_namespace{sparsify.cpp}
 Nanonymous_namespace{statistics.cpp}
 CDefaultGatherer
 Nanonymous_namespace{transform.cpp}
 CVisitorBias
 Nanonymous_namespace{weights.cpp}
 Nanonymous_namespace{xmc.cpp}
 CXMCHeaderCollects the data from the header of an xmc file XMC data format
 NdismecMain namespace in which all types, classes, and functions are defined
 Nconfusion_matrix_detail
 Neigen_visitors
 Ninit
 Nio
 Nl2_reg_sq_hinge_detail
 Nmodel
 Nobjective
 Nparallel
 Npostproc
 Nprediction
 Nsolvers
 Nstats
 Ntypes
 CDataProcessing
 CDatasetBase
 CBinaryDataCollects the data related to a single optimization problem
 CMultiLabelData
 Clabel_id_tStrong typedef for an int to signify a label id
 CCascadeTraining
 CDiSMECTrainingAn implementation of TrainingSpec that models the DiSMEC algorithm
 CTrainingSpecThis class gathers the setting-specific parts of the training process
 CDismecTrainingConfig
 CCascadeTrainingConfig
 CResultStatsGatherer
 CTrainingStatsGatherer
 CTrainingTaskGeneratorGenerates tasks for training weights for the i'th label
 CTrainingResult
 CPropensityModel
 CWeightingSchemeBase class for label-based weighting schemes
 CConstantWeightingSimple weighting scheme that assigns the same weighting to all label_ids
 CPropensityWeighting
 CPropensityDownWeighting
 CCustomWeighting
 CFastSparseRowIterThis is an almost verbatim copy of the SparseFeatures::InnerIterator provided by Eigen
 CHashVectorAn Eigen vector with versioning information, to implement simple caching of results
 CVectorHashA unique identifier for a HashVector
 CCacheHelper
 CHyperParameterBaseBase class for all objects that have adjustable hyper-parameters
 CHyperParametersThis class represents a set of hyper-parameters
 Copaque_int_typeAn integer-like type that represents categorical values
 CKahanAccumulatorImplements a numerically stable sum algorithm
 NEigen
 CEigenBase