DiSMEC++
Namespace List
Here is a list of all namespaces with brief descriptions:
[detail level
1
2
3
4
5
]
▼
N
anonymous_namespace{cascade.cpp}
C
CombinedWeightInitializer
▼
N
anonymous_namespace{collection.cpp}
C
MockStat
N
anonymous_namespace{dense.cpp}
▼
N
anonymous_namespace{dense_and_sparse.cpp}
C
L2Regularizer
C
ZeroPhi
N
anonymous_namespace{generic_linear.cpp}
N
anonymous_namespace{hash_vector.cpp}
Local namespace in which we define the counter used to create the unique ids for the hash vector
▼
N
anonymous_namespace{hyperparams.cpp}
C
TestObject
C
NestedTestObject
N
anonymous_namespace{linear.cpp}
N
anonymous_namespace{metrics.cpp}
▼
N
anonymous_namespace{minimizer.cpp}
C
MockMinimizer
A minimizer to be used in test cases that returns a fixed result
C
MockObjective
An objective to be used in test cases. Does not do any computations, but just resturns constants
N
anonymous_namespace{model-io.cpp}
N
anonymous_namespace{newton.cpp}
N
anonymous_namespace{null.cpp}
▼
N
anonymous_namespace{numa.cpp}
C
NodeData
N
anonymous_namespace{numpy.cpp}
N
anonymous_namespace{objective.cpp}
N
anonymous_namespace{prediction.cpp}
N
anonymous_namespace{py_data.cpp}
N
anonymous_namespace{py_train.cpp}
N
anonymous_namespace{reg_sq_hinge.cpp}
N
anonymous_namespace{regularizers_imp.cpp}
▼
N
anonymous_namespace{runner.cpp}
C
DummyTask
N
anonymous_namespace{slice.cpp}
▼
N
anonymous_namespace{sparse.cpp}
C
PredictVisitor
C
SetWeightsVisitor
N
anonymous_namespace{sparsify.cpp}
▼
N
anonymous_namespace{statistics.cpp}
C
DefaultGatherer
▼
N
anonymous_namespace{transform.cpp}
C
VisitorBias
N
anonymous_namespace{weights.cpp}
▼
N
anonymous_namespace{xmc.cpp}
C
XMCHeader
Collects the data from the header of an xmc file
XMC data format
▼
N
dismec
Main namespace in which all types, classes, and functions are defined
►
N
confusion_matrix_detail
C
ConfusionMatrixBase
N
eigen_visitors
►
N
init
C
ConstantInitializer
C
ConstantInitializationStrategy
An initialization strategy that sets the weight vector to a given constant
C
MeanOfFeaturesInitializer
C
MeanOfFeaturesStrategy
C
TypeLookup
C
TypeLookup< false >
C
TypeLookup< true >
C
MultiPosMeanInitializer
C
MultiPosMeanStrategy
C
NumpyInitializer
C
NumpyInitializationStrategy
C
PreTrainedInitializer
C
PreTrainedInitializationStrategy
C
SubsetFeatureMeanInitializer
C
SubsetFeatureMeanStrategy
C
ZeroInitializer
C
ZeroInitializationStrategy
C
WeightsInitializer
Base class for all weight initializers
C
WeightInitializationStrategy
Base class for all weight init strategies
►
N
io
N
detail
►
N
model
Namespace for all model-related io functions
C
SaveOption
C
WeightFileEntry
Collect the data about a weight file
C
PartialModelIO
This class is used as an implementation detail to capture the common code of
PartialModelSaver
and
PartialModelLoader
C
PartialModelSaver
Manage saving a model consisting of multiple partial models
►
C
PartialModelLoader
This class allows loading only a subset of the weights of a large model
C
SubModelRangeSpec
N
prediction
C
MatrixHeader
Collects the rows and columns parsed from a plain-text matrix file
C
LoLBinarySparse
Binary Sparse Matrix in List-of-Lists format
C
NpyHeaderData
Contains the data of the header of a npy file with an array that has at most 2 dimensions
N
l2_reg_sq_hinge_detail
►
N
model
C
DenseModel
Implementation of the
Model
class that stores the weights as a single, dense matrix
C
PartialModelSpec
Specifies how to interpret a weight matrix for a partial model
C
Model
A model combines a set of weight with some meta-information about these weights
C
SparseModel
C
SubModelWrapper
►
N
objective
C
DenseAndSparseLinearBase
Base class for implementationa of an objective that combines dense features and sparse features
C
DenseAndSparseMargin
C
GenericLinearClassifier
This is a non-templated, runtime-polymorphic generic implementation of the linear classifier objective
C
GenericMarginClassifier
A utility class template that, when instatiated with a
MarginFunction
, produces the corresponding linear classifier loss
C
LinearClassifierBase
Base class for objectives that use a linear classifier
C
LinearClassifierImpBase
Implementation helper for linear classifier derived classes
C
SquaredHingePhi
C
HuberPhi
C
LogisticPhi
C
Objective
Class that models an optimization objective
C
PointWiseRegularizer
Base class for pointwise regularization functions
C
Regularized_SquaredHingeSVC
C
SquaredNormConfig
C
HuberConfig
C
ElasticConfig
C
SquaredNormRegularizer
This class implements a squared norm (L2) regularizer. Thus
f(x) = 0.5 |x|^2
C
HuberRegularizer
This class implements a huber regularizer
C
ElasticNetRegularizer
►
N
parallel
C
NUMAReplicatorBase
Base class for
NUMAReplicator
C
NUMAReplicator
Helper class to ensure that each NUMA node has its own copy of some immutable data
C
ThreadDistributor
This class helps with distributing threads to the different CPU cores
C
RunResult
C
ParallelRunner
C
TaskGenerator
Base class for all parallelized operations
C
thread_id_t
Strong typedef for an int to signify a thread id
C
numa_node_id_t
Strong typedef for an int to signify a numa domain
C
cpu_id_t
Strong typedef for an int to signify a (core of a) cpu
►
N
postproc
C
CombinePostProcessor
C
CombinedFactory
C
GenericPostProcFactory
C
ReorderPostProc
►
C
Sparsify
C
BoundData
C
UpperBoundResult
C
IdentityPostProc
C
CullingPostProcessor
C
PostProcessor
C
PostProcessFactory
►
N
prediction
C
sTrueLabelInfo
C
sPredLabelInfo
C
EvaluateMetrics
This
TaskGenerator
enables the calculation of evaluation metrics on top-k style sparse predictions
C
MetricCollectionInterface
Base class for all metrics that can be calculated during the evaluation phase
C
ConfusionMatrixRecorder
C
InstanceAveragedMetric
C
InstanceRankedPositives
C
AbandonmentAtK
C
MetricReportInterface
C
InstanceWiseMetricReporter
C
MacroMetricReporter
C
PredictionBase
Base class for handling predictions
C
FullPredictionTaskGenerator
C
TopKPredictionTaskGenerator
►
N
solvers
C
CGMinimizer
Approximately solve a linear equation
Ax + b = 0
C
sLineSearchResult
Result of a Line Search operation
C
BacktrackingLineSearch
Backtracking line search using the armijo rule
C
MinimizationResult
C
Minimizer
C
NewtonWithLineSearch
C
NullOptimizer
Optimizer that does not change the initial vector
►
N
stats
N
detail
C
StatisticsCollection
This class manages a collection of named
Statistics
objects
C
StatisticMetaData
Data that is associated with each declared statistics
C
CounterStat
C
BasicStat
C
TaggedStat
C
MultiStat
C
FullRecordStat
C
VectorReductionStat
C
TagContainer
A tag container combines a name with a shared pointer, which points to the tag value
C
Statistics
TODO maybe we should solve this with a variant which does the dispatch of expected type and tag
C
StatImplBase
Helper class for implementing
Statistics
classes
C
ScopeTimer
C
Tracked
A base class to be used for all types that implement some for of statistics tracking
►
N
types
►
N
type_helpers
N
definitions
C
GenericMatrixRef
C
GenericMatrix
C
GenericVectorRef
C
VarWrapBase
C
EigenVariantWrapper
C
RefVariant
C
DataProcessing
C
DatasetBase
C
BinaryData
Collects the data related to a single optimization problem
C
MultiLabelData
C
label_id_t
Strong typedef for an int to signify a label id
C
CascadeTraining
C
DiSMECTraining
An implementation of
TrainingSpec
that models the DiSMEC algorithm
C
TrainingSpec
This class gathers the setting-specific parts of the training process
C
DismecTrainingConfig
C
CascadeTrainingConfig
C
ResultStatsGatherer
►
C
TrainingStatsGatherer
C
StatData
C
TrainingTaskGenerator
Generates tasks for training weights for the i'th label
C
TrainingResult
C
PropensityModel
C
WeightingScheme
Base class for label-based weighting schemes
C
ConstantWeighting
Simple weighting scheme that assigns the same weighting to all
label_id
s
C
PropensityWeighting
C
PropensityDownWeighting
C
CustomWeighting
C
FastSparseRowIter
This is an almost verbatim copy of the SparseFeatures::InnerIterator provided by
Eigen
C
HashVector
An
Eigen
vector with versioning information, to implement simple caching of results
C
VectorHash
A unique identifier for a
HashVector
C
CacheHelper
►
C
HyperParameterBase
Base class for all objects that have adjustable hyper-parameters
C
HyperParamData
This structure collects the Getter and Setter functions. This is what we store in the variant
C
HyperParameters
This class represents a set of hyper-parameters
C
opaque_int_type
An integer-like type that represents categorical values
C
KahanAccumulator
Implements a numerically stable sum algorithm
▼
N
Eigen
C
EigenBase
Generated by
1.9.1